
[Rani, 2(11): November, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3223-3226]

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

An Efficient Way of Decreasing the Latency of Flip Flops with Floating Point
Multiplier

G Lalitha Rani

veenulalitha@gmail.com
Abstract

 In this paper we proposed efficient implementation of floating point multiplier which is technology
independent pipelined design. This also handles the case of overflow and underflow cases. This verified that they
can decrease the flipflop latency over Xilinx flipflop core.

Keywords: MFLOPS, Multiplier, CAD Design Flow.

Introduction
In computing, floating point describes a method

of representing an approximation of a real number in a
way that can support a wide range of values. The
numbers are, in general, represented approximately to a
fixed number of significant digits (the mantissa) and
scaled using an exponent. The base for the scaling is
normally 2, 10 or 16. The typical number that can be
represented exactly is of the form: The idea of floating-
point representation over intrinsically integer fixed-point
numbers, which consist purely of significant, is that
expanding it with the exponent component achieves
greater range. For instance, to represent large values, e.g.
distances between galaxies, there is no need to keep all
39 decimal places down to femtometre-resolution
(employed in particle physics). Assuming that the best
resolution is in light years, only the 9 most significant
decimal digits matter, whereas the remaining 30 digits
carry pure noise, and thus can be safely dropped. This
represents a savings of 100 bits of computer data storage.
Instead of these 100 bits, much fewer are used to
represent the scale (the exponent), e.g. 8 bits or 2
decimal digits. Given that one number can encode both
astronomic and subatomic distances with the same nine
digits of accuracy, but because a 9-digit number is 100
times less accurate than the 11 digits reserved for scale,
this is considered a trade-off exchanging range for
precision. The example of using scaling to extend the
dynamic range reveals another contrast with fixed-point
numbers: Floating-point values are not uniformly spaced.
Small values, close to zero, can be represented with
much higher resolution (e.g. one femtometre) than large
ones because a greater scale (e.g. light years) must be
selected for encoding significantly larger values. That is,
floating-point numbers cannot represent point
coordinates with atomic accuracy at galactic distances,
only close to the origin. Floating point representation

makes numerical computation much easier. You could
write all your programs using integers or fixed-point
representations, but this is tedious and error-prone.

Fig 1.0 Simple floating point multiplication
For example, you could write a program with

the understanding that all integers in the program are 100
times bigger than the number they represent. The integer
2345, for example, would represent the number 23.45.
As long as you are consistent, everything works. This is
actually the same as using fixed point notation. In fixed
point binary notation the binary point is assumed to lie
between two of the bits. This is the same as an
understanding that the integer the bits represent should
be divided by a particular power of two. But it is very
hard to stay consistent. A programmer must remember
where the decimal (or binary) point "really is" in each
number. Sometimes one program needs to deal with
several different ranges of numbers. Consider a program

[Rani, 2(11): November, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3223-3226]

that must deal with both the measurements that describe
the dimensions on a silicon chip (say 0.000000010 to
0.000010000 meters) and also the speed of electrical
signals, 100000000.0 to 300000000.0 meters/second. It is
hard to find a place to fix the decimal point so that all
these values can be represented. Notice that in writing
those numbers (0.000000010, 0.000010000,
100000000.0, and 300000000.0) I was able to put the
decimal point where it was needed in each number. We
present a pipelined 32-bit Instruction Set Extension (ISE)
for complex valued floating point operations. The ISE
was implemented in the NIOS II processor, and the
constraint on the number of inputs and outputs of the
register bank was overcome by distributing the reads and
writes of the instruction over several cycles. The
hardware size was reduced by sharing hardware between
instructions. The main contribution of this work is that
the designed ISE performs division, multiplication,
addition and subtraction on complex valued numbers.
Comparing the use of the embedded multiplier and
divider in a NIOS II processor to the designed ISE for an
image processing problem, a speedup of 12.2 times was
observed. Multipliers play an important role in today’s
digital signal processing and various other applications.
With advances in technology, many researchers have
tried and are trying to design multipliers which offer
either of the following design targets – high speed, low
power consumption, regularity of layout and hence less
area or even combination of them in one multiplier thus
making them suitable for various high speed, low power
and compact VLSI implementation. The common
multiplication method is “add and shift” algorithm. In
parallel multipliers number of partial products to be
added is the main parameter that determines the
performance of the multiplier. To reduce the number of
partial products to be added, Modified Booth algorithm
is one of the most popular algorithms. To achieve speed
improvements Wallace Tree algorithm can be used to
reduce the number of sequential adding stages. Further
by combining both Modified Booth algorithm and
Wallace Tree technique we can see advantage of both
algorithms in one multiplier. However with increasing
parallelism, the amount of shifts between the partial
products and intermediate sums to be added will increase
which may result in reduced speed, increase in silicon
area due to irregularity of structure and also increased
power consumption due to increase in interconnect
resulting from complex routing. On the other hand
“serial-parallel” multipliers compromise speed to achieve
better performance for area and power consumption. The
selection of a parallel or serial multiplier actually
depends on the nature of application. In this lecture we
introduce the multiplication algorithms and architecture

and compare them in terms of speed, area, power and
combination of these metrics.

Fig1.1 Double precision floating point multiplier

Floating Point Arithmetic
 Arithmetic operations on floating point
numbers consist of addition, subtraction, multiplication
and division the operations are done with algorithms
similar to those used on sign magnitude integers (because
of the similarity of representation) -- example, only add
numbers of the same sign. If the numbers are of opposite
sign, must do subtraction. Addition, subtraction,
multiplication, division.

Floating Point Multiplication Algorithm

A pipelined multiplier based on the digit
products can be designed using digit product generation
logic and the digit adders.
25 * 35 = 875
Now for binary mutiplication

Fig 3.0 Multiplication Algorithm

[Rani, 2(11): November, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3223-3226]

The multiplication algorithm for an N bit multiplicand by
N bit multiplier is shown below:

A) Serial Multiplier

 Where area and power is of utmost
importance and delay can be tolerated the serial
multiplier is used. This circuit uses one adder to add the
m * n partial products. The circuit is shown in the fig.
below for m=n=4. Multiplicand and Multiplier inputs
have to be arranged in a special manner synchronized
with circuit behavior as shown on the figure. The inputs
could be presented at different rates depending on the
length of the multiplicand and the multiplier. Two clocks
are used, one to clock the data and one for the reset. A
first order approximation of the delay is O (m,n). With
this circuit arrangement the delay is given as D =[
(m+1)n + 1] tfa.

Fig 3.1 Serial Multiplier

B) Signed multiplication

Direct two's complement array multiplication
can perform "direct" multiplication of two's complement
numbers without requiring the complementing stages,
significantly speeds up the multiplication process. This
appendix will discuss two direct two's complement
multiplication algorithms and their implementation.
These two direct two's complement multiplication
algorithms are Tri-section modified Pezaris two's
complement multiplication, Baugh-Wooley two's
complement multiplication These two algorithms are

generally used in systems where the operands are less
than 16-bit. They are relatively simpler than Booth
multiplier whose structure is based on recoding the 2's
complement operand in order to reduce the number of
partial products to be added. Listed below are four
arithmetic equations that describe the input/output
relationships of the four types of generalized full adders.

Operands Multiplication and Rounding

Fig 3.1 Significant multiplication ,and Rounding

 The exponents of the two registers are
subtracted. The difference is positive, indicating that the
exponent in register A (on the left is larger. Control
selects the exponent from register A (by asserting 0 at the
multiplexer on the left) to pass to the next section of the
adder to be used as the preliminary result for the
exponent. The difference between the two exponents is
2, indicating the significant in register B must be shifted
right two places. Before entering the ALU or the shift
register, the 23-bit significant are expanded to 32 bits by
inserting the leading implicit 1 and filling in leading 0's.
(To provide for round off, trailing 0's may also be
appended to the original 23 bits.) Control selects the
(expanded) contents of register B to be placed in the shift
register and the contents of register A (expanded) to be
sent directly to the ALU. The contents of register B are
shifted right two places and the two terms are added. In
this example, the 23 bits of the significant are mapped
into bits 24 -- 2 during the process of expanding to 32
bits. Bits 0 and 1 are set to 0 initially and used for
calculating round off. The implicit leading 1 is set in bit

[Rani, 2(11): November, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3223-3226]

25 and bits 26 -- 31 hold leading 0's. The input to the
ALU (after shifting) is shown in the diagram below.
(Note! Since the last two bits of the significant in
register B are both 0, shifting right just moves these two
0's into the additional trailing bits.)

Fig 3.2 Range of Floating point numbers

Conclusion

This paper presents an implementation of a
floating point multiplier that supports the IEEE 754-2008
binary interchange format; the multiplier doesn’t
implement rounding and just presents the significant
multiplication result as is (48 bits); this gives better
precision if the whole 48 bits are utilized in another unit;
i.e. a floating point adder to form a MAC unit achieves
301 MFLOPs. This verified that they can decrease the
flipflop latency over Xilinx flipflop core.

References

[1] Computer Arithmetic Systems, Algorithms,
Architecture and Implementations. A. Omondi.
Prentice Hall, 1994.

[2] Computer Architecture A Quantitative
Approach, chapter Appendix A. D. Goldberg.
Morgan Kaufmann, 1990.

[3] Reduced latency IEEE floating-point standard
adder architectures. Beaumont-Smith, A.;
Burgess, N.; Lefrere, S.; Lim, C.C.; Computer
Arithmetic, 1999. Proceedings. 14th IEEE
Symposium on , 14-16 April 1999

[4] Rounding in Floating-Point Addition using a
Compound Adder. J.D. Bruguera and T. Lang.
Technical Report. University of Santiago de
Compostela. (2000)

[5] IEEE 754-2008, IEEE Standard for Floating-
Point Arithmetic, 2008.

[6] B. Fagin and C. Renard, “Field Programmable
Gate Arrays and Floating Point Arithmetic,”
IEEE Transactions on VLSI, vol. 2, no. 3, pp.
365– 367, 1994.

[7] N. Shirazi, A. Walters, and P. Athanas,
“Quantitative Analysis of Floating Point
Arithmetic on FPGA Based Custom Computing
Machines,” Proceedings of the IEEE
Symposium on FPGAs for Custom Computing
Machines (FCCM’95), pp.155 162, 1995.

[8] L. Louca, T. A. Cook, and W. H. Johnson,
“Implementation of IEEE Single Precision

Floating Point Addition and Multiplication on
FPGAs,” Proceedings of 83 the IEEE
Symposium on FPGAs for Custom Computing
Machines (FCCM’96), pp. 107–116, 1996.

[9] A. Jaenicke and W. Luk, "Parameterized
Floating-Point Arithmetic on FPGAs", Proc. of
IEEE ICASSP, 2001, vol. 2, pp. 897-900.

