[Rani, 2(11): November, 2013]

| JESRT

ISSN: 2277-9655
Impact Factor: 1.852

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY
An Efficient Way of Decreasing the Latency of Flip Flopswith Floating Point
Multiplier
G Lalitha Rani
veenulalitha@gmail.com

Abstract
In this paper we proposed efficient implementatiof floating point multiplier which is technology
independent pipelined design. This also handles#se of overflow and underflow cases. This vatifieat they

can decrease the flipflop latency over Xilinx flggd core.

Keywords. MFLOPS, Multiplier, CAD Design Flow.

Introduction

In computing, floating point describes a method
of representing an approximation of a real numbea i
way that can support a wide range of values. The
numbers are, in general, represented approximstety
fixed number of significant digits (the mantissa)da
scaled using an exponent. The base for the sca#ding
normally 2, 10 or 16. The typical number that can b
represented exactly is of the form: The idea oétflg-
point representation over intrinsically integerefikpoint
numbers, which consist purely of significant, isatth
expanding it with the exponent component achieves
greater range. For instance, to represent largesak.g.
distances between galaxies, there is no need o &kke
39 decimal places down to femtometre-resolution
(employed in particle physics). Assuming that thestb
resolution is in light years, only the 9 most sfigrint
decimal digits matter, whereas the remaining 30tslig
carry pure noise, and thus can be safely droppbts T
represents a savings of 100 bits of computer datage.
Instead of these 100 bits, much fewer are used to
represent the scale (the exponent), e.g. 8 bit or
decimal digits. Given that one number can encodé bo
astronomic and subatomic distances with the same ni
digits of accuracy, but because a 9-digit numbet(8
times less accurate than the 11 digits reserveddale,
this is considered a trade-off exchanging range for
precision. The example of using scaling to extemel t
dynamic range reveals another contrast with fixeuip
numbers: Floating-point values are not uniformlgcsd.
Small values, close to zero, can be represented wit
much higher resolution (e.g. one femtometre) ttaagd
ones because a greater scale (e.g. light years) lbeus
selected for encoding significantly larger valu€kat is,
floating-point numbers cannot represent point
coordinates with atomic accuracy at galactic distan
only close to the origin. Floating point represgion

makes numerical computation much easier. You could
write all your programs using integers or fixedtoi
representations, but this is tedious and errorgron

Siml Sign) Ewpl Bap? Simifieand] SimiSeand?

Fecult Flags Logic

I

Fig 1.0 Simple floating point multiplication

For example, you could write a program with
the understanding that all integers in the progaaen100
times bigger than the number they represent. Ttegén
2345, for example, would represent the number 23.45
As long as you are consistent, everything workkis Ts
actually the same as using fixed point notationfixad
point binary notation the binary point is assumedig
between two of the bits. This is the same as an
understanding that the integer the bits represeoitld
be divided by a particular power of two. But itvsry
hard to stay consistent. A programmer must remember
where the decimal (or binary) point "really is" @ach
number. Sometimes one program needs to deal with
several different ranges of numbers. Consider graro

http: // www.ijesrt.confC)l nternational Journal of Engineering Sciences & Research Technology
[3223-3226]

[Rani, 2(11): November, 2013]

that must deal with both the measurements thatritbesc
the dimensions on a silicon chip (say 0.000000G10 t
0.000010000 meters) and also the speed of eldctrica
signals, 100000000.0 to 300000000.0 meters/sed¢bisd.
hard to find a place to fix the decimal point satthll
these values can be represented. Notice that itmgyr
those numbers (0.000000010, 0.000010000,
100000000.0, and 300000000.0) I was able to put the
decimal point where it was needed in each numbée.
present a pipelined 32-bit Instruction Set Extemgi&E)

for complex valued floating point operations. TI&El
was implemented in the NIOS Il processor, and the
constraint on the number of inputs and outputshef t
register bank was overcome by distributing the sesai
writes of the instruction over several cycles. The
hardware size was reduced by sharing hardware batwe
instructions. The main contribution of this workthsat

the designed ISE performs division, multiplication,
addition and subtraction on complex valued numbers.
Comparing the use of the embedded multiplier and
divider in a NIOS Il processor to the designed f8Ean
image processing problem, a speedup of 12.2 tinges w
observed. Multipliers play an important role in agts
digital signal processing and various other appitice.
With advances in technology, many researchers have
tried and are trying to design multipliers whichfeof
either of the following design targets — high spdew
power consumption, regularity of layout and heness|
area or even combination of them in one multipirars
making them suitable for various high speed, lowgio
and compact VLSI implementation. The common
multiplication method is “add and shift” algorithrn
parallel multipliers number of partial products be
added is the main parameter that determines the
performance of the multiplier. To reduce the numbker
partial products to be added, Modified Booth aldori

is one of the most popular algorithms. To achigwees
improvements Wallace Tree algorithm can be used to
reduce the number of sequential adding stageshéturt
by combining both Modified Booth algorithm and
Wallace Tree technique we can see advantage of both
algorithms in one multiplier. However with increagi
parallelism, the amount of shifts between the phurti
products and intermediate sums to be added wittase
which may result in reduced speed, increase iaacsili
area due to irregularity of structure and also éased
power consumption due to increase in interconnect
resulting from complex routing. On the other hand
“serial-parallel” multipliers compromise speed thieve
better performance for area and power consumpiiba.
selection of a parallel or serial multiplier actyal
depends on the nature of application. In this lectue
introduce the multiplication algorithms and arcbitee

ISSN: 2277-9655
Impact Factor: 1.852

and compare them in terms of speed, area, power and
combination of these metrics.

32-bit Multiplier input 3~ 0%

501
3 D
2 g
H Cycle select——— Multiplexor Bbits =
§| Heesee P {Mantissa bit 37, 5-0's)
£ bits31106 | bitsOto5
E 204
% 32-bit Booth encoder v
Q
® [
ol
Partial Product Generators 50
Carry-save adder array T ;0(
Product
706

Figl.1 Double precision floating point multiplier

Floating Point Arithmetic

Arithmetic operations on floating point
numbers consist of addition, subtraction, multigiicn
and division the operations are done with algorghm
similar to those used on sign magnitude integezsgbse
of the similarity of representation) -- example)yoadd
numbers of the same sign. If the numbers are pbsife
sign, must do subtraction Addition, subtraction,
multiplication, division.

Floating Point Multiplication Algorithm

A pipelined multiplier based on the digit
products can be designed using digit product gé¢inera
logic and the digit adders.

25*35 =875
Now for binary mutiplication
2 5
.
a 1
5] 5 8

Al el
(1.4

f
Add tha numbers along the diagonals

1 5
4 0 & 2 5
+ 1 D

Hesult
Fig 3.0 Multiplication Algorithm

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology
[3223-3226]

[Rani, 2(11): November, 2013]

The multiplication algorithm for an N bit multipbnd by
N bit multiplier is shown below:

Y=Yo1 Yoo e
X=Xo1 Xa2

........... Y: Y Yy Multiplicand
X3 X3 Xo Multiplier

Generally

Va-1X0 Yn-2X0 Yn-3X0 . VIXO YOXO0
n-2X1 ¥

Yo-lXn-2 Yn-2X0n-2 Yo3Xnl
Yo-1Xnl Yn2X0nl Yo3Xnl

Y1Xn-2 V0Xn-2
Y1Xn-1 Y0Xn-1

Pln-l P2n-2 Pm-3 P2 P1 PO

A) Serial Multiplier

Where area and power is of utmost
importance and delay can be tolerated the serial
multiplier is used. This circuit uses one addeada the
m * n partial products. The circuit is shown in tfg.
below for m=n=4. Multiplicand and Multiplier inputs
have to be arranged in a special manner synchmbnize
with circuit behavior as shown on the figure. Thputs
could be presented at different rates dependinghen
length of the multiplicand and the multiplier. Twtocks
are used, one to clock the data and one for thed.rés
first order approximation of the delay is O (m,With
this circuit arrangement the delay is given as D =
(m+1)n + 1] tfa.

ofojofao

’- Serial Register

ClK CLKI[N+1)

Fig 3.1 Serial Multiplier

B) Signed multiplication
Direct two's complement array multiplication

can perform "direct" multiplication of two's compient
numbers without requiring the complementing stages,
significantly speeds up the multiplication proceshis
appendix will discuss two direct two's complement
multiplication algorithms and their implementation.
These two direct two's complement multiplication
algorithms are Tri-section modified Pezaris two's
complement multiplication, Baugh-Wooley two's
complement multiplication These two algorithms are

ISSN: 2277-9655
Impact Factor: 1.852

generally used in systems where the operands ase le
than 16-bit. They are relatively simpler than Booth
multiplier whose structure is based on recoding 2%
complement operand in order to reduce the number of
partial products to be added. Listed below are four
arithmetic equations that describe the input/output
relationships of the four types of generalized &dtlers.

gl Qas=R -1+
Tpel (40X 410
Tpek (8= (a7
Tped (0800 (o

Operands Multiplication and Rounding

= » bit sipmifemd £dd v
A |

ol | 1 | £ - L lowsr codar bats |

s.‘;mscm';} [] P - 1 lower cides bits |

Signifznds bebre mmltiplication

= 2p bic L~

Hesuli ofsnzmicand mulhplecahon befre normahizfion sk
1 p-hit sigmefieand feld 1
A A

[0~ 1 msher arder bats v, [R] =]

TMomnalized product befwe Fomding

Fig 3.1 Significant multiplication ,and Rounding

The exponents of the two registers are
subtracted. The difference is positive, indicatingt the
exponent in register A (on the left is larger. @oh
selects the exponent from register A (by assefliagjthe
multiplexer on the left) to pass to the next sectd the
adder to be used as the preliminary result for the
exponent. The difference between the two exporisnts
2, indicating the significant in register B must diefted
right two places. Before entering the ALU or thefts
register, the 23-bit significant are expanded tdB2 by
inserting the leading implicit 1 and filling in ldag 0's.
(To provide for round off, trailing O's may also be
appended to the original 23 bits.) Control seldtis
(expanded) contents of register B to be placetiershift
register and the contents of register A (expanded)e
sent directly to the ALU. The contents of regidBeare
shifted right two places and the two terms are ddtle
this example, the 23 bits of the significant areppex
into bits 24 -- 2 during the process of expanding3?
bits. Bits 0 and 1 are set to O initially and uded
calculating round off. The implicit leading 1 istsn bit

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology
[3223-3226]

[Rani, 2(11): November, 2013]

25 and bits 26 -- 31 hold leading 0's. The inputhe
ALU (after shifting) is shown in the diagram below.
(Note! Since the last two bits of the significaint
register B are both 0, shifting right just movessth two
0's into the additional trailing bits.)

TUnderflow

Orverfloyw Within Range Within Range Orverfloy
I Mo
|]
I
—o Negative numbers T 0 Positive numbers o
Deenormalized

Fig 3.2 Range of Floating point numbers

Conclusion

This paper presents an implementation of a
floating point multiplier that supports the IEEE473008
binary interchange format; the multiplier doesn’t
implement rounding and just presents the significan
multiplication result as is (48 bits); this give®tter
precision if the whole 48 bits are utilized in amert unit;
i.e. a floating point adder to form a MAC unit aehés
301 MFLOPs.This verified that they can decrease the
flipflop latency over Xilinx flipflop core.

References

[1] Computer Arithmetic Systems, Algorithms,
Architecture and Implementationd. Omondi.
Prentice Hall, 1994.

[2] Computer Architecture A Quantitative
Approach, chapter Appendix A. D. Goldberg.
Morgan Kaufmann, 1990.

[3] Reduced latency IEEE floating-point standard
adder architectures. Beaumont-Smith, A,
Burgess, N.; Lefrere, S.; Lim, C.C.; Computer
Arithmetic, 1999. Proceedings. 14th IEEE
Symposium on , 14-16 April 1999

[4] Rounding in Floating-Point Addition using a
Compound AdderJ.D. Bruguera and T. Lang.
Technical Report. University of Santiago de
Compostela. (2000)

[5] IEEE 754-2008, IEEE Standard for Floating-
Point Arithmetic, 2008.

[6] B. Fagin and C. Renard, “Field Programmable
Gate Arrays and Floating Point Arithmetic,”
IEEE Transactions on VLSI, vol. 2, no. 3, pp.
365— 367, 1994,

[71 N. Shirazi, A. Walters, and P. Athanas,
“Quantitative Analysis of Floating Point
Arithmetic on FPGA Based Custom Computing
Machines,” Proceedings of the IEEE
Symposium on FPGAs for Custom Computing
Machines (FCCM’95), pp.155 162, 1995.

[8] L. Louca, T. A. Cook, and W. H. Johnson,
“Implementation of IEEE Single Precision

ISSN: 2277-9655
Impact Factor: 1.852

Floating Point Addition and Multiplication on

FPGAs,” Proceedings of 83 the IEEE
Symposium on FPGAs for Custom Computing
Machines (FCCM'96), pp. 107-116, 1996.

[9] A. Jaenicke and W. Luk, "Parameterized

Floating-Point Arithmetic on FPGAs", Proc. of
IEEE ICASSP, 2001, vol. 2, pp. 897-900.

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology

[3223-3226]

